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26. INFLATION

Written May 2016 by J. Ellis (King’s College London; CERN) and D. Wands (U. of
Portsmouth).

26.1. Motivation and Introduction

The standard Big-Bang model of cosmology provides a successful framework in which
to understand the thermal history of our Universe and the growth of cosmic structure, but
it is essentially incomplete. As described in Sec. 22.2.4 in “Big Bang Cosmology” review,
Big-Bang cosmology requires very specific initial conditions. It postulates a uniform
cosmological background, described by a spatially-flat, homogeneous and isotropic
Robertson-Walker (RW) metric (Eq. (22.1) in “Big Bang Cosmology” review), with
scale factor R(t). Within this setting, it also requires an initial almost scale-invariant
distribution of primordial density perturbations as seen, for example, in the cosmic
microwave background (CMB) radiation (described in Chap. 28, “Cosmic Microwave
Background” review), on scales far larger than the causal horizon at the time the CMB
photons last scattered.

The Hubble expansion rate, H ≡ Ṙ/R, in a Robertson-Walker cosmology is given by
the Friedmann constraint equation (Eq. (22.8) in “Big Bang Cosmology” review)

H2 =
8πρ

3M2
P

+
Λ

3
− k

R2
, (26.1)

where k/R2 is the intrinsic spatial curvature. We use natural units such that the speed

of light c = 1 and hence we have the Planck mass MP = G
−1/2
N ≃ 1019 GeV. A

cosmological constant, Λ, of the magnitude required to accelerate the Universe today
(see Chap. 27, “Dark Energy” review) would have been completely negligible in the early
Universe where the energy density ρ ≫ M2

P Λ ∼ 10−12(eV)4. The standard early Universe
cosmology, described in Sec. 22.1.5 in “Big Bang Cosmology” review, is thus dominated
by non-relativistic matter (pm = 0) or radiation (pr = ρr/3 for an isotropic distribution).
This leads to a decelerating expansion with R̈ < 0.

The hypothesis of inflation [1,2] postulates a period of accelerated expansion, R̈ > 0,
in the very early Universe, preceding the standard radiation-dominated era, which offers a
physical model for the origin of these initial conditions, as reviewed in [3,4,5,6,7]. Such
a period of accelerated expansion (i) drives a curved RW spacetime (with spherical or
hyperbolic spatial geometry) towards spatial flatness, and (ii) it also expands the causal
horizon beyond the present Hubble length, so as to encompass all the scales relevant to
describe the large-scale structure observed in our Universe today, via the following two
mechanisms.

(i) A spatially-flat universe with vanishing spatial curvature, k = 0, has the dimensionless
density parameter Ωtot = 1, where we define (Eq. (22.13) in “Big Bang Cosmology”
review; see Chap. 25, “Cosmological Parameters” review for more complete
definitions)

Ωtot ≡
8πρtot

3M2
P H2

, (26.2)
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2 26. Inflation

with ρtot ≡ ρ + ΛM2
P /8π. If we re-write the Friedmann constraint (Eq. (26.1)) in

terms of Ωtot we have

1 − Ωtot = − k

Ṙ2
. (26.3)

Observations require |1 − Ωtot,0| < 0.005 today [8], where the subscript 0 denotes
the present-day value. Taking the time derivative of Eq. (26.3) we obtain

d

dt
(1 − Ωtot) = −2

R̈

Ṙ
(1 − Ωtot) . (26.4)

Thus in a decelerating expansion, Ṙ > 0 and R̈ < 0, any small initial deviation from
spatial flatness grows, (d/dt)|1−Ωtot| > 0. A small value such as |1−Ωtot,0| < 0.005

today requires an even smaller value at earlier times, e.g., |1 − Ωtot| < 10−5 at the
last scattering of the CMB, which appears unlikely, unless for some reason space is
exactly flat. However, an extended period of accelerated expansion in the very early
Universe, with Ṙ > 0 and R̈ > 0 and hence (d/dt)|1 − Ωtot| < 0, can drive Ωtot

sufficiently close to unity, so that |1−Ωtot,0| remains unobservably small today, even
after the radiation- and matter-dominated eras, for a wide range of initial values of
Ωtot.

(ii) The comoving distance (the present-day proper distance) traversed by light between
cosmic time t1 and t2 in an expanding universe can be written, (see Eq. (22.31) in
“Big Bang Cosmology” review), as

D0(t1, t2) = R0

∫ t2

t1

dt

R(t)
= R0

∫ ln R2

lnR1

d(lnR)

Ṙ
. (26.5)

In standard decelerated (radiation- or matter-dominated) cosmology the integrand,
1/Ṙ, decreases towards the past, and there is a finite comoving distance traversed
by light (a particle horizon) since the Big Bang (R1 → 0). For example, the
comoving size of the particle horizon at the CMB last-scattering surface (R2 = Rlss)
corresponds to D0 ∼ 100Mpc, or approximately 1◦ on the CMB sky today (see
Sec. 22.2.4 in “Big Bang Cosmology” review).

However, during a period of inflation, 1/Ṙ increases towards the past, and hence the
integral (Eq. (26.5)) diverges as R1 → 0, allowing an arbitrarily large causal horizon,
dependent only upon the duration of the accelerated expansion. Assuming that the
Universe inflates with a finite Hubble rate H∗ at t1 = t∗, ending with Hend < H∗ at
t2 = tend, we have

D0(t∗, tend) >

(

R0

Rend

)

H−1
∗

(

eN∗ − 1
)

, (26.6)

where N∗ ≡ ln(Rend/R∗) describes the duration of inflation, measured in terms of the
logarithmic expansion (or “e-folds”) from t1 = t∗ up to the end of inflation at t2 = tend,
and R0/Rend is the subsequent expansion from the end of inflation to the present day. If
inflation occurs above the TeV scale, the comoving Hubble scale at the end of inflation,
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26. Inflation 3

(R0/Rend)H−1
end, is less than one astronomical unit (∼ 1011 m), and a causally-connected

patch can encompass our entire observable Universe today, which has a size D0 > 30 Gpc,
if there were more than 40 e-folds of inflation (N∗ > 40). If inflation occurs at the GUT
scale (1015 GeV) then we require more than 60 e-folds.

Producing an accelerated expansion in general relativity requires an energy-momentum
tensor with negative pressure, p < −ρ/3 (see Eq. (22.9) in “Big Bang Cosmology” review
and Chap. 27, “Dark Energy” review), quite different from the hot dense plasma of
relativistic particles in the hot Big Bang. However a positive vacuum energy V > 0 does
exert a negative pressure, pV = −ρV . The work done by the cosmological expansion must
be negative in this case so that the local vacuum energy density remains constant in an
expanding universe, ρ̇V = −3H(ρV + pV ) = 0. Therefore, a false vacuum state can drive
an exponential expansion, corresponding to a de Sitter spacetime with a constant Hubble
rate H2 = 8πρV /3M2

P on spatially-flat hypersurfaces.

A constant vacuum energy V , equivalent to a cosmological constant Λ in the Friedmann
equation, cannot provide a complete description of inflation in the early Universe, since
inflation must necessarily have come to an end in order for the standard Big-Bang
cosmology to follow. A phase transition to the present true vacuum is required to release
the false vacuum energy into the energetic plasma of the hot Big Bang and produce
the large total entropy of our observed Universe today. Thus we must necessarily study
dynamical models of inflation, where the time-invariance of the false vacuum state is
broken by a time-dependent field. A first-order phase transition would produce a very
inhomogeneous Universe [9] unless a time-dependent scalar field leads to a rapidly
changing percolation rate [10,11,12]. However, a second-order phase transition [13,14],
controlled by a slowly-rolling scalar field, can lead to a smooth classical exit from the
vacuum-dominated phase.

As a spectacular bonus, quantum fluctuations in that scalar field could provide a
source of almost scale-invariant density fluctuations [15,16], as detected in the CMB
(see section CosmicMicrowaveBackground), which are thought to be the origin of the
structures seen in the Universe today.

Accelerated expansion and primordial perturbations can also be produced in some
modified gravity theories (e.g., [1,17]) , which introduce additional non-minimally
coupled degrees of freedom. Such inflation models can often be conveniently studied by
transforming variables to an ‘Einstein frame’ in which Einstein’s equations apply with
minimally coupled scalar fields [18,19,20].

In the following we will review scalar field cosmology in general relativity and the
spectra of primordial fluctuations produced during inflation, before studying selected
inflation models.
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4 26. Inflation

26.2. Scalar Field Cosmology

The energy-momentum tensor for a canonical scalar field φ with self-interaction
potential V (φ) is given in Eq. (22.51) in “Big Bang Cosmology” review. In a
homogeneous background this corresponds to a perfect fluid with density

ρ =
1

2
φ̇2 + V (φ) , (26.7)

and isotropic pressure

p =
1

2
φ̇2 − V (φ) , (26.8)

while the 4-velocity is proportional to the gradient of the field, uµ ∝ ∇µφ.

A field with vanishing potential energy acts like a stiff fluid with p = ρ = ϕ̇2/2,
whereas if the time-dependence vanishes we have p = −ρ = −V and the scalar field is
uniform in time and space. Thus a classical, potential-dominated scalar-field cosmology,
with p ≃ −ρ, can naturally drive a quasi-de Sitter expansion; the slow time-evolution
of the energy density weakly breaks the exact O(1, 3) symmetry of four-dimensional de
Sitter spacetime down to a Robertson-Walker (RW) spacetime, where the scalar field
plays the role of the cosmic time coordinate.

In a scalar-field RW cosmology the Friedmann constraint equation (Eq. (26.1)) reduces
to

H2 =
8π

3M2
P

(

1

2
φ̇2 + V

)

− k

R2
, (26.9)

while energy conservation (Eq. (22.10) in “Big Bang Cosmology” review) for a
homogeneous scalar field reduces to the Klein-Gordon equation of motion (Eq. (22.53) in
“Big Bang Cosmology” review)

φ̈ = −3Hφ̇ − V ′(φ) . (26.10)

The evolution of the scalar field is thus driven by the potential gradient V ′ = dV/dφ,
subject to damping by the Hubble expansion Hφ̇.

If we define the Hubble slow-roll parameter

ǫH ≡ − Ḣ

H2
, (26.11)

then we see that inflation (R̈ > 0 and hence Ḣ > −H2) requires ǫH < 1. In this
case the spatial curvature decreases relative to the scalar field energy density as the
Universe expands. Hence in the following we drop the spatial curvature and consider
a spatially-flat RW cosmology, assuming that inflation has lasted sufficiently long
that our observable universe is very close to spatially flatness. However, we note that
bubble nucleation, leading to a first-order phase transition during inflation, can lead to
homogeneous hypersurfaces with a hyperbolic (‘open’) geometry, effectively resetting the
spatial curvature inside the bubble [21]. This is the basis of so-called open inflation
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26. Inflation 5

models [22,23,24], where inflation inside the bubble has a finite duration, leaving a finite
negative spatial curvature.

In a scalar field-dominated cosmology (Eq. (26.11)) gives

ǫH =
3φ̇2

2V + φ̇2
, (26.12)

in which case we see that inflation requires a potential-dominated expansion, φ̇2 < V .

26.2.1. Slow-Roll Inflation :

It is commonly assumed that the field acceleration term, φ̈, in (Eq. (26.10)) can
be neglected, in which case one can give an approximate solution for the inflationary
attractor [25]. This slow-roll approximation reduces the second-order Klein-Gordon
equation (Eq. (26.10)) to a first-order system, which is over-damped, with the potential
gradient being approximately balanced against to the Hubble damping:

3Hφ̇ ≃ −V ′ , (26.13)

and at the same time that the Hubble expansion (Eq. (26.9)) is dominated by the
potential energy

H2 ≃ 8π

3M2
P

V (φ) , (26.14)

corresponding to ǫH ≪ 1.

A necessary condition for the validity of the slow-roll approximation is that the
potential slow-roll parameters

ǫ ≡ M2
P

16π

(

V ′

V

)2

, η ≡ M2
P

8π

(

V ′′

V

)

, (26.15)

are small, i.e., ǫ ≪ 1 and |η| ≪ 1, requiring the potential to be correspondingly flat. If we
identify V ′′ with the effective mass of the field, we see that the slow-roll approximation
requires that the mass of the scalar field must be small compared with the Hubble
scale. We note that the Hubble slow-roll parameter coincides with the potential slow-roll
parameter, ǫH ≃ ǫ, to leading order in the slow-roll approximation.

The slow-roll approximation allows one to determine the Hubble expansion rate as a
function of the scalar field value, and vice versa. In particular, we can express, in terms
of the scalar field value during inflation, the total logarithmic expansion, or number of
“e-folds”:

N∗ ≡ ln

(

Rend

R∗

)

=

∫ tend

t∗

Hdt ≃ −
∫ φend

φ∗

√

4π

ǫ

dφ

MP
for V ′ > 0 . (26.16)

Given that the slow-roll parameters are approximately constant during slow-roll inflation,
dǫ/dN ≃ 2ǫ(η − 2ǫ) = O(ǫ2), we have

N∗ ≃ 4√
ǫ

∆φ

MP
. (26.17)

Since we require N > 40 to solve the flatness, horizon and entropy problems of the
standard Big Bang cosmology, we require either very slow roll, ǫ < 0.01, or a large change
in the value of the scalar field relative to the Planck scale, ∆φ > MP .
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6 26. Inflation

26.2.2. Reheating :

Slow-roll inflation can lead to an exponentially large universe, close to spatial flatness
and homogeneity, but the energy density is locked in the potential energy of the scalar
field, and needs to be converted to particles and thermalised to recover a hot Big Bang
cosmology at the end of inflation [26,27]. This process is usually referred to as reheating,
although there was not necessarily any preceding thermal era. Reheating can occur when
the scalar field evolves towards the minimum of its potential, converting the potential
energy first to kinetic energy. This can occur either through the breakdown of the
slow-roll condition in single-field models, or due to an instability triggered by the inflaton
reaching a critical value, in multi-field models known as hybrid inflation models [28].

Close to a simple minimum, the scalar field potential can be described by a quadratic
function, V = m2φ2/2, where m is the mass of the field. We can obtain slow-roll inflation
in such a potential at large field values, φ ≫ MP . However, for φ ≪ MP the field
approaches an oscillatory solution:

φ(t) ≃ MP√
3π

sin(mt)

mt
. (26.18)

For |φ| < MP the Hubble rate drops below the inflaton mass, H < m, and the field
oscillates many times over a Hubble time. Averaging over several oscillations, ∆t ≫ m−1,
we find 〈φ̇2/2〉∆t ≃ 〈m2φ2/2〉∆t and hence

〈ρ〉∆t ≃
M2

P

6πt2
, 〈p〉∆t ≃ 0 . (26.19)

This coherent oscillating field corresponds to a condensate of non-relativistic massive
inflaton particles, driving a matter-dominated era at the end of inflation, with scale factor
R ∝ t2/3.

The inflaton condensate can lose energy through perturbative decays due to terms in
the interaction Lagrangian, such as

Lint ⊂ −λiσφχ2
i − λjφψ̄jψj (26.20)

that couple the inflation to scalar fields χi or fermions ψj , where σ has dimensions of
mass and the λi are dimensionless couplings. When the mass of the inflaton is much
larger than the decay products, the decay rate is given by [29]

Γi =
λ2

i σ
2

8πm
, Γj =

λ2
jm

8π
. (26.21)

These decay products must in turn thermalise with Standard Model particles before
we recover conventional hot Big Bang cosmology. An upper limit on the reheating
temperature after inflation is given by [27]

Trh = 0.2

(

100

g∗

)1/4
√

MP Γtot , (26.22)
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26. Inflation 7

where g∗ is the effective number of degrees of freedom and Γtot is the total decay rate for
the inflaton, which is required to be less than m for perturbative decay.

The baryon asymmetry of the Universe must be generated after the main release of
entropy during inflation, which is an important constraint on possible models. Also, the
fact that the inflaton mass is much larger than the mass scale of the Standard Model
opens up the possibility that it may decay into massive stable or metastable particles that
could be connected with dark matter, constraining possible models. For example, in the
context of supergravity models the reheat temperature is constrained by the requirement
that gravitinos are not overproduced, potentially destroying the successes of Big Bang
nucleosynthesis. For a range of gravitino masses one must require Trh < 109 GeV [30,31].

The process of inflaton decay and reheating can be significantly altered by interactions
leading to space-time dependences in the effective masses of the fields. In particular,
parametric resonance can lead to explosive, non-perturbative decay of the inflaton in
some cases, a process often referred to as preheating [32,26]. For example, an interaction
term of the form

Lint ⊂ −λ2φ2χ2 , (26.23)

leads to a time-dependent effective mass for the χ field as the inflaton φ oscillates. This
can lead to non-adiabatic particle production if the bare mass of the χ field is small
for large couplings or for rapid changes of the inflaton field. The process of preheating
is highly model-dependent, but it highlights the possible role of non-thermal particle
production after and even during inflation.

26.3. Primordial Perturbations from Inflation

Although inflation was originally discussed as a solution to the problem of initial
conditions required for homogeneous and isotropic hot Big Bang cosmology, it was soon
realised that inflation also offered a mechanism to generate the inhomogeneous initial
conditions required for the formation of large-scale structure [15,16,17,33].

26.3.1. Metric Perturbations :

In a homogeneous classical inflationary cosmology driven by a scalar field, the
inflaton field is uniform on constant-time hypersurfaces, φ = φ0(t). However, quantum
fluctuations inevitably break the spatial symmetry leading to an inhomogeneous field:

φ(t, xi) = φ0(t) + δφ(t, xi) . (26.24)

At the same time, one should consider inhomogeneous perturbations of the RW spacetime
metric (see, e.g., [34,35,36]) :

ds2 = (1 + 2A)dt2 − 2RBidtdxi − R2 [

(1 + 2C)δij + ∂i∂jE + hij
]

dxidxj , (26.25)

where A, B, E and C are scalar perturbations while hij represents transverse and
tracefree, tensor metric perturbations. Vector metric perturbations can be eliminated
using Einstein constraint equations in a scalar field cosmology.

October 4, 2016 22:43



8 26. Inflation

The tensor perturbations remain invariant under a temporal gauge transformation
t → t + δt(t, xi), but both the scalar field and the scalar metric perturbations transform.
For example, we have

δφ → δφ − φ̇0δt , C → C − Hδt . (26.26)

However, there are gauge invariant combinations, such as [37]

Q = δφ − φ̇0

H
C , (26.27)

which describes the scalar field perturbations on spatially-flat hypersurfaces. This is
simply related to the curvature perturbation on uniform-field hypersurfaces:

R = C − H

φ̇0
δφ = −H

φ̇0
Q , (26.28)

which coincides in slow-roll inflation, ρ ≃ ρ(φ), with the curvature perturbation on
uniform-density hypersurfaces [16]

ζ = C − H

ρ̇0
δρ . (26.29)

Thus scalar field and scalar metric perturbations are coupled by the evolution of the
inflaton field.

26.3.2. Gravitational waves from inflation :

The tensor metric perturbation, hij in Eq. (Eq. (26.25)), is gauge-invariant and
decoupled from the scalar perturbations at first order. This represents the free excitations
of the spacetime, i.e., gravitational waves, which are the simplest metric perturbations to
study at linear order.

Each tensor mode, with wavevector ~k, has two linearly-independent transverse and
trace-free polarisation states:

hij(~k) = h~k
qij + h̄~k

q̄ij . (26.30)

The linearised Einstein equations then yield the same evolution equation for the amplitude
as that for a massless field in RW spacetime:

ḧ~k
+ 3Hḣ~k

+
k2

R2
h~k

= 0 , (26.31)

(and similarly for h̄~k
). This can be re-written in terms of the conformal time, η =

∫

dt/R,
and the conformally rescaled field:

u~k
=

MP Rh~k√
32π

. (26.32)
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26. Inflation 9

This conformal field then obeys the wave equation for a canonical scalar field in Minkowski
spacetime with a time-dependent mass:

u′′~k
+

(

k2 − R′′

R

)

u~k
= 0 . (26.33)

During slow-roll
R′′

R
≃ (2 − ǫ)R2H2 . (26.34)

This makes it possible on sub-Hubble scales, k2/R2 ≫ H2, where the background
expansion can be neglected, to quantise the linearised metric fluctuations, u~k

→ û~k
.

Crucially, in an inflationary expansion, where R̈ > 0, the comoving Hubble length
H−1/R = 1/Ṙ decreases with time. Thus all modes start inside the Hubble horizon and
it is possible to take the initial field fluctuations to be in a vacuum state at early times or
on small scales:

〈u~k1
u~k2

〉 =
i

2
(2π)3δ(3)

(

~k1 + ~k2

)

. (26.35)

In terms of the amplitude of the tensor metric perturbations, this corresponds to

〈h~k1
h~k2

〉 =
1

2

PT (k1)

4πk3
1

(2π)3δ(3)
(

~k1 + ~k2

)

, (26.36)

where the factor 1/2 appears due to the two polarisation states that contribute to the
total tensor power spectrum:

Pt(k) =
64π

M2
P

(

k

2πR

)2

. (26.37)

On super-Hubble scales, k2/R2 ≪ H2, we have the growing mode solution, u~k
∝ R,

corresponding to h~k
→ constant, i.e., tensor modes are frozen-in on super-Hubble scales,

both during and after inflation. Thus, connecting the initial vacuum fluctuations on
sub-Hubble scales to the late-time power spectrum for tensor modes at Hubble exit during
inflation, k = R∗H∗, we obtain

Pt(k) ≃ 64π

M2
P

(

H∗

2π

)2

. (26.38)

In the de Sitter limit, ǫ → 0, the Hubble rate becomes time-independent and the
tensor spectrum on super-Hubble scales becomes scale-invariant [38]. However slow-roll
evolution leads to weak time dependence of H∗ and thus a scale-dependent spectrum on
large scales, with a spectral tilt

nt ≡
d lnPT

d ln k
≃ −2ǫ∗ . (26.39)
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10 26. Inflation

26.3.3. Density Perturbations from Inflation :

The scalar field fluctuations on spatially-flat hypersurfaces are coupled to scalar metric
perturbations at first order, but these can be eliminated using the Einstein constraint
equations to yield an evolution equation

Q̈~k
+ 3HQ̇~k

+

[

k2

R2
+ V ′′ − 8π

3M2
P

d

dt

(

R3φ̇2

H

)]

Q~k
= 0 . (26.40)

Terms proportional to M−2
P represent the effect on the field fluctuations of gravity at

first order. As can be seen, this vanishes in the limit of a constant background field, and
hence is suppressed in the slow-roll limit, but it is of the same order as the effective mass,
V ′′ = 3ηH2, so must be included if we wish to model deviations from exact de Sitter
symmetry.

This wave equation can also be written in the canonical form for a free field in
Minkowski spacetime if we define [37]

v~k
≡ RQ~k

, (26.41)

to yield

v′′~k
+

(

k2 − z′′

z

)

v~k
= 0 , (26.42)

where we define

z ≡ Rφ̇

H
,

z′′

z
≃ (2 + 5ǫ − 3η)R2H2 , (26.43)

where the last approximate equality holds to leading order in the slow-roll approximation.

As previously done for gravitational waves, we quantise the linearised field fluctuations
v~k

→ v̂~k
on sub-Hubble scales, k2/R2 ≫ H2, where the background expansion can be

neglected. Thus we impose

〈v~k1
v~k2

〉 =
i

2
(2π)3δ(3)

(

~k1 + ~k2

)

. (26.44)

In terms of the field perturbations, this corresponds to

〈Q~k1
Q~k2

〉 =
PQ(k1)

4πk3
1

(2π)3δ(3)
(

~k1 + ~k2

)

, (26.45)

where the power spectrum for vacuum field fluctuations on sub-Hubble scales,
k2/R2 ≫ H2, is simply

PQ(k) =

(

k

2πR

)2

, (26.46)

yielding the classic result for the vacuum fluctuations for a massless field in de Sitter at
Hubble exit, k = R∗H∗:

PQ(k) ≃
(

H

2π

)2

∗

. (26.47)
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26. Inflation 11

In practice there are slow-roll corrections due to the small but finite mass (η) and field
evolution (ǫ) [39].

Slow-roll corrections to the field fluctuations are small on sub-Hubble scales, but can
become significant as the field and its perturbations evolve over time on super-Hubble
scales. Thus it is helpful to work instead with the curvature perturbation, ζ defined
in equation (Eq. (26.29)), which remains constant on super-Hubble scales for adiabatic
density perturbations both during and after inflation [16,40]. Thus we have an expression
for the primordial curvature perturbation on super-Hubble scales produced by single-field
inflation:

Pζ(k) =

[

(

H

φ̇

)2

PQ(k)

]

∗

≃ 4π

M2
P

[

1

ǫ

(

H

2π

)2
]

∗

. (26.48)

Comparing this with the primordial gravitational wave power spectrum (Eq. (26.38)) we
obtain the tensor-to-scalar ratio for single-field slow-roll inflation

r ≡ Pt

Pζ
≃ 16ǫ∗ . (26.49)

Note that the scalar amplitude is boosted by a factor 1/ǫ∗ during slow-roll inflation,
because small scalar field fluctuations can lead to relatively large curvature perturbations
on hypersurfaces defined with respect to the density if the potential energy is only weakly
dependent on the scalar field, as in slow-roll. Indeed, the de Sitter limit is singular, since
the potential energy becomes independent of the scalar field at first order, ǫ → 0, and the
curvature perturbation on uniform-density hypersurfaces becomes ill-defined.

We note that in single-field inflation the tensor-to-scalar ratio and the tensor tilt
(Eq. (26.39)) at the same scale are both determined by the first slow-roll parameter at
Hubble exit, ǫ∗, giving rise to an important consistency test for single-field inflation:

nt = −r

8
. (26.50)

This may be hard to verify if r is small, making any tensor tilt nt difficult to measure.
On the other hand, it does offer a way to rule out single-field slow-roll inflation if either r
or nt is large.

Given the relatively large scalar power spectrum, it has proved easier to measure
the scalar tilt, conventionally defined as ns − 1. Slow-roll corrections lead to slow
time-dependence of both H∗ and ǫ∗, giving a weak scale-dependence of the scalar power
spectrum:

ns − 1 ≡ d lnPζ

d ln k
≃ −6ǫ∗ + 2η∗ , (26.51)

and a running of this tilt at second-order in slow-roll:

dns

d ln k
≃ −8ǫ∗(3ǫ∗ − 2η∗) − 2ξ2

∗ , (26.52)
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12 26. Inflation

where the running introduces a new slow-roll parameter at second-order:

ξ2 =
M4

P

64π2

V ′V ′′′

V 2
. (26.53)

Any relation between the tensor-to-scalar ratio and the scalar tilt must impose some
model-dependent relation between the slow-roll parameters. For example, for power-law
inflation or chaotic inflation driven by a massive field (see later) we have η ≃ ǫ and hence

ns − 1 ≃ −r

8
. (26.54)

Violating this condition would rule out these specific classes of single-field models.

26.3.4. Observational Bounds :

The observed scale-dependence of the power spectrum makes it necessary to specify the
comoving scale, k, at which quantities are constrained and hence the Hubble-exit time,
k = a∗H∗, when the corresponding theoretical quantities are calculated during inflation.
This is usually expressed in terms of the number of e-folds from the end of inflation [41]:

N∗(k) ≃ 67 − ln

(

k

a0H0

)

+
1

4
ln

(

V 2
∗

M4
P ρend

)

+
1

12
ln

(

ρrh

ρend

)

− 1

12
ln(g∗), (26.55)

where H−1
0 /a0 is the present comoving Hubble length. Different models of reheating and

and thus different reheat temperatures and densities, ρrh in Eq. (26.55), lead to a range
of possible values for N∗ corresponding to a fixed physical scale, and hence we have a
range of observational predictions for a given inflation model, as seen in Fig. 26.1.

The Planck 2015 temperature and polarisation data (see Chap. 28, “Cosmic Microwave
Background” review) are consistent with a smooth featureless power spectrum over a
range of comoving wavenumbers, 0.008 h−1 Mpc−1 ≤ k ≤ 0.1 h Mpc−1. In the absence
of running, the data measure the the spectral index

ns = 0.968 ± 0.006 , (26.56)

corresponding to a deviation from scale-invariance exceeding the 5σ level. If running of
the spectral tilt is included in the model, this is constrained to be

dns

d ln k
= −0.003 ± 0.007 . (26.57)

A recent analysis of the BICEP2/Keck Array, Planck and other data places an upper
bound on the tensor-to-scalar ratio [42]

r < 0.07 (26.58)

at the 95% CL.
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These observational bounds can be converted into bounds on the slow-roll parameters
and hence the potential during slow-roll inflation. Setting higher-order slow-roll
parameters (beyond second-order in horizon-flow parameters [43]) to zero the Planck
collaboration obtain the following bounds [44]

ǫ < 0.012 , (26.59)

η = −0.0080+0.0088
−0.0146 , (26.60)

ξ2 = 0.0070+0.0045
−0.0069 , (26.61)

which can be used to constrain models, as discussed in the next Section.

Fig. 26.1, which is taken from [44], compares observational CMB constraints
on the tilt, ns, in the spectrum of scalar perturbations and the ratio, r, between the
magnitudes of tensor and scalar perturbations. Important rôles are played by data
from the Planck satellite, the BICEP2/Keck Array (BKP) and measurements of baryon
acoustic oscillations (BAO). The reader is referred to [44] for technical details. These
experimental constraints are compared with the predictions of some of the inflationary
models discussed in this review. Generally speaking, models with a concave potential are
favoured over those with a convex potential, and models with power-law inflation, as
opposed to de Sitter-like (quasi-)exponential expansion, are now excluded.

Figure 26.1: The marginalized joint 68 and 95% CL regions for the tilt in
the scalar perturbation spectrum, ns, and the relative magnitude of the tensor
perturbations, r, obtained from the Planck 2015 data and their combinations with
BICEP2/Keck Array and/or BAO data, confronted with the predictions of some of
the inflationary models discussed in this review. This figure is taken from [44].
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14 26. Inflation

26.4. Models

26.4.1. Pioneering Models :

The paradigm of the inflationary Universe was proposed in [2], where it was pointed
out that an early period of (near-)exponential expansion, in addition to resolving the
horizon and flatness problems of conventional Big-Bang cosmology as discussed above (the
possibility of a de Sitter phase in the early history of the Universe was also proposed in the
non-minimal gravity model of [1], with the motivation of avoiding an initial singularity),
would also dilute the prior abundance of any unseen heavy, (meta-)stable particles, as
exemplified by monopoles in grand unified theories (GUTs; see Chap. 16, “Grand Unified
Theories” review). The original proposal was that this inflationary expansion took place
while the Universe was in a metastable state (a similar suggestion was made in [45,46],
where in [45] it was also pointed out that such a mechanism could address the horizon
problem) and was terminated by a first-order transition due to tunnelling though a
potential barrier. However, it was recognized already in [2] that this ‘old inflation’
scenario would need modification if the transition to the post-inflationary universe were
to be completed smoothly without generating unacceptable inhomogeneities.

This ‘graceful exit’ problem was addressed in the ‘new inflation’ model of [13]( see
also [14] and footnote [39] of [2]) , which studied models based on an SU(5) GUT
with an effective potential of the Coleman-Weinberg type (i.e., dominated by radiative
corrections), in which inflation could occur during the roll-down from the local maximum
of the potential towards a global minimum. However, it was realized that the Universe
would evolve to a different minimum from the Standard Model [47], and it was also
recognized that density fluctuations would necessarily be too large [15], since they were
related to the GUT coupling strength.

These early models of inflation assumed initial conditions enforced by thermal
equilibrium in the early Universe. However, this assumption was questionable: indeed, it
was not made in the model of [1], in which a higher-order gravitational curvature term
was assumed to arise from quantum corrections, and the assumption of initial thermal
equilibrium was jettisoned in the ‘chaotic’ inflationary model of [48]. These are the
inspirations for much recent inflationary model building, so we now discuss them in more
detail, before reviewing contemporary models.

In this section we will work in natural units where we set the reduced Planck mass to
unity, i.e., 8π/M2

P = 1. All masses are thus relative to the reduced Planck scale.

26.4.2. R
2 Inflation :

The first-order Einstein-Hilbert action, (1/2)
∫

d4x
√−gR, where R is the Ricci scalar

curvature, is the minimal possible theory consistent with general coordinate invariance.
However, it is possible that there might be non-minimal corrections to this action, and
the unique second-order possibility is

S =
1

2

∫

d4x
√−g

(

R +
R2

6M2

)

. (26.62)
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26. Inflation 15

It was pointed out in [1] that an R2 term could be generated by quantum effects,
and that (Eq. (26.62)) could lead to de Sitter-like expansion of the Universe. Scalar
density perturbations in this model were calculated in [17]. Because the initial phase
was (almost) de Sitter, these perturbations were (approximately) scale-invariant, with
magnitude ∝ M . It was pointed out in [17] that requiring the scalar density perturbations
to lie in the range 10−3 to 10−5, consistent with upper limits at that time, would
require M ∼ 10−3 to 10−5 in Planck units, and it was further suggested in that these
perturbations could lead to the observed large-scale structure of the Universe, including
the formation of galaxies.

Although the action (Eq. (26.62)) does not contain an explicit scalar field, [17] reduced
the calculation of density perturbations to that of fluctuations in the scalar curvature
R, which could be identified (up to a factor) with a scalar field of mass M . The formal
equivalence of R2 gravity (Eq. (26.62)) to a theory of gravity with a massive scalar φ had
been shown in [18], see also [19]. The effective scalar potential for what we would
nowadays call the ‘inflaton’ [49] takes the form

S =
1

2

∫

d4x
√−g

[

R + (∂µφ)2 − 3

2
M2(1 − e−

√
2/3φ)2

]

(26.63)

when the action is written in the Einstein frame, and the potential is shown as the solid
black line in Fig. 26.2. Using (Eq. (26.48)), one finds that the amplitude of the scalar
density perturbations in this model is given by

∆R =
3M2

8π2
sinh4

(

φ√
6

)

, (26.64)

The measured magnitude of the density fluctuations in the CMB requires M ≃ 1.3× 10−5

in Planck units (assuming N∗ ≃ 55), so one of the open questions in this model is
why M is so small. Obtaining N∗ ≃ 55 also requires an initial value of φ ≃ 5.5, i.e., a
super-Planckian initial condition, and another issue for this and many other models is
how the form of the effective potential is protected and remains valid at such large field
values. Using Eq. (26.51) one finds that ns ≃ 0.965 for N∗ ≃ 55 and using (Eq. (26.49))
one finds that r ≃ 0.0035. These predictions are consistent with the present data from
Planck and other experiments, as seen in Fig. 26.1.

26.4.3. Chaotic Models with Power-Law Potentials :

As has already been mentioned, a key innovation in inflationary model-building was
the suggestion to abandon the questionable assumption of a thermal initial state, and
consider ‘chaotic’ initial conditions with very general forms of potential [48]. (Indeed,
the R2 model discussed above can be regarded as a prototype of this approach.) The
chaotic approach was first proposed in the context of a simple power-law potential of the
form µ4−αφα, and the specific example of λφ4 was studied in [48]. Such models make
the following predictions for the slow-roll parameters ǫ and η:

ǫ =
1

2

(

α

φ

)2

, η =
α(α − 1)

φ2
, (26.65)
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16 26. Inflation

Figure 26.2: The inflationary potential V in the R2 model (solid black line)
compared with its form in various no-scale models discussed in detail in [50](
dashed coloured lines).

leading to the predictions

r ≈ 4α

N∗

, ns − 1 ≈ −α + 2

2N∗

, (26.66)

which are shown in Fig. 26.1 for some illustrative values of α. We note that the prediction
of the original φ4 model lies out of the frame, with values of r that are too large and
values of ns that are too small. The φ3 model has similar problems, and would in any case
require modification in order to have a well-defined minimum. The simplest possibility is
φ2, but this is now also disfavoured by the data, at the 95% CL if only the Planck data
are considered, and more strongly if other data are included, as seen in Fig. 26.1. (For
non-minimal models of quadratic inflation that avoid this problem, see, e.g., [51]. )

Indeed, as can be seen in Fig. 26.1, all models with a convex potential (i.e., one curving
upwards) are disfavoured compared to models with a concave potential. Thus, a model

with a φ2/3 potential may just be compatible with the data at the 68% CL, whereas
linear and φ4/3 potentials are allowed only at about the 95% CL.

26.4.4. Hilltop Models :

This preference for a concave potential motivates interest in ‘hilltop’ models [52],
whose starting-point is a potential of the form

V (φ) = Λ4
[

1 −
(

φ

µ

)p

+ . . .

]

, (26.67)
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where the . . . represent extra terms that yield a positive semi-definite potential. To first
order in the slow-roll parameters, when x ≡ φ/µ is small, one has

ns ≃ 1 − p(p − 1)µ−2 xp−2

(1 − xp)
− 3

8
r , r ≃ 8p2µ−2 x2p−2

(1 − xp)2
. (26.68)

As seen in Fig. 26.1, a hilltop model with p = 4 can be compatible with the Planck and
other measurements, if µ ≫ MP .

26.4.5. D-Brane Inflation :

Many scenarios for inflation involving extra dimensions have been proposed, e.g., the
possibility that observable physics resides on a three-dimensional brane, and that there
is an inflationary potential that depends on the distance between our brane and an
antibrane, with a potential of the form [53]

V (φ) = Λ4
[

1 −
(

µ

φ

)p

+ . . .

]

. (26.69)

In this scenario the effective potential vanishes in the limit φ → ∞, corresponding to
complete separation between our brane and the antibrane. The predictions for ns and r
in this model can be obtained from (Eq. (26.68)) by exchanging p ↔ −p, and are also
consistent with the Planck and other data.

26.4.6. Natural Inflation :

Also seen in Fig. 26.1 are the predictions of ‘natural inflation’ [54], in which one
postulates a non-perturbative shift symmetry that suppresses quantum corrections, so
that a hierarchically small scale of inflation, H ≪ MP , is technically natural. In the
simplest models, there is a periodic potential of the form

V (φ) = Λ4
[

1 + cos

(

φ

f

)]

, (26.70)

where f is a dimensional parameter reminiscent of an axion decay constant (see the next
subsection) [55], which must have a value > MP . Natural inflation can yield predictions
similar to quadratic inflation (which are no longer favoured, as already discussed), but
can also yield an effective convex potential. Thus, it may lead to values of r that are
acceptably small, but for values of ns that are in tension with the data, as seen in
Fig. 26.1.
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26.4.7. Axion Monodromy Models :

The effective potentials in stringy models [56,57] motivated by axion monodromy may
be of the form

V (φ) = µ4−αφα + Λ4e
−C

(

φ

φ0

)pΛ

cos

[

γ +
φ

f

(

φ

φ0

)pf+1
]

, (26.71)

where µ, Λ, f and φ0 are parameters with the dimension of mass, and C, p, pΛ, pf and
γ are dimensionless constants, generalizing the potential ( [54]) in the simplest models
of natural inflation. The oscillations in (Eq. (26.71)) are associated with the axion field,
and powers pΛ, pf 6= 0 may arise from φ-dependent evolutions of string moduli. Since
the exponential prefactor in (Eq. (26.71)) is due to non-perturbative effects that may be
strongly suppressed, the oscillations may be unobservably small. Specific string models
having φα with α = 4/3, 1 or 2/3 have been constructed in [56,57], providing some
motivation for the low-power models mentioned above.

As seen in Fig. 26.1, the simplest axion monodromy models with these values of the
power α are compatible with all the available data at the 95% CL, though not at the 68%
CL. The Planck Collaboration has also searched for characteristic effects associated with
the second term in (Eq. (26.71)), such as a possible drift in the modulation amplitude
(setting pΛ = C = 0), and a possible drifting frequency generated by pf 6= 0, without
finding any compelling evidence [44].

26.4.8. Higgs Inflation :

Since the energy scale during inflation is commonly expected to lie between the Planck
and TeV scales, it may serve as a useful bridge with contacts both to string theory or
some other quantum theory of gravity, on the one side, and particle physics on the other
side. However, as the above discussion shows, much of the activity in building models of
inflation has been largely independent of specific connections with these subjects, though
some examples of string-motivated models of inflation were mentioned above.

The most economical scenario for inflation might be to use as inflaton the only
established scalar field, namely the Higgs field (see Chap. 11, “Status of Higgs boson
physics” review). A specific model assuming a non-minimal coupling of the Higgs field h
to gravity was constructed in [58]. Its starting-point is the action

S =

∫

d4x
√−g

[

M2 + ξh2

2
R +

1

2
∂µh∂µh − λ

4
(h2 − v2)2

]

, (26.72)

where v is the Higgs vacuum expectation value. The model requires ξ ≫ 1, in which case
it can be rewritten in the Einstein frame as

S =

∫

d4x
√−g

[

1

2
R +

1

2
∂µχ∂µχ − U(χ)

]

, (26.73)

where the effective potential for the canonically-normalized inflaton field χ has the form

U(χ) =
λ

4ξ2

[

1 + exp

(

− 2χ√
6MP

)]−2

, (26.74)
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which is similar to the effective potential of the R2 model at large field values. As such,
the model inflates successfully if ξ ≃ 5 × 104 mh/(

√
2v), with predictions for ns and r

that are indistinguishable from the predictions of the R2 model shown in Fig. 26.1.

This model is very appealing, but must confront several issues. One is to understand
the value of ξ, and another is the possibility of unitarity violation. However, a more
fundamental issue is whether the effective quartic Higgs coupling is positive at the
scale of the Higgs field during inflation. Extrapolations of the effective potential in
the Standard Model using the measured values of the masses of the Higgs boson and
the top quark indicate that probably λ < 0 at this scale [59], though there are still
significant uncertainties associated with the appropriate input value of the top mass and
the extrapolation to high renormalization scales.

26.4.9. Supersymmetric Models of Inflation :

Supersymmetry [60] is widely considered to be a well-motivated possible extension
of the Standard Model that might become apparent at the TeV scale. It is therefore
natural to consider supersymmetric models of inflation. These were originally proposed
because of the problems of the the new inflationary theory [13,14] based on the one-loop
(Coleman-Weinberg) potential for breaking SU(5). Several of these problems are related
to the magnitude of the effective potential parameters: in any model of inflation based
on an elementary scalar field, some parameter in the effective potential must be small in
natural units, e.g., the quartic coupling λ in a chaotic model with a quartic potential, or
the mass parameter µ in a model of chaotic quadratic inflation. These parameters are
renormalized multiplicatively in a supersymmetric theory, so that the quantum corrections
to small values would be under control. Hence it was suggested that inflation cries out
for supersymmetry [61], though non-supersymmetric resolutions of the problems of
Coleman-Weinberg inflation are also possible: see, e.g., Ref. [62].

In the Standard Model there is only one scalar field that could be a candidate for the
inflaton, namely the Higgs field discussed above, but even the minimal supersymmetric
extension of the Standard Model (MSSM) contains many scalar fields. However, none
of these is a promising candidate for the inflaton. The minimal extension of the MSSM
that may contain a suitable candidate is the supersymmetric version of the minimal
seesaw model of neutrino masses, which contains the three supersymmetric partners of
the heavy singlet (right-handed) neutrinos. One of these singlet sneutrinos ν̃ could be the
inflaton [63]: it would have a quadratic potential, the mass coefficient required would
be ∼ 1013 GeV, very much in the expected ball-park for singlet (right-handed) neutrino
masses, and sneutrino inflaton decays also could give rise to the cosmological baryon
asymmetry via leptogenesis. However, as seen in Fig. 26.1 and already discussed, a purely
quadratic inflationary potential is no longer favoured by the data. This difficulty could
in principle be resolved in models with multiple sneutrinos [64], or by postulating a
trilinear sneutrino coupling and hence a superpotential of Wess-Zumino type [65], which
can yield successful inflation with predictions intermediate between those of natural
inflation and hilltop inflation in Fig. 26.1.

Finally, we note that it is also possible to obtain inflation via supersymmetry breaking,
as in the model [66] whose predictions are illustrated in Fig. 26.1.

October 4, 2016 22:43



20 26. Inflation

26.4.10. Supergravity Models :

Any model of early-Universe cosmology, and specifically inflation, must necessarily
incorporate gravity. In the context of supersymmetry this requires an embedding in
some supergravity theory [67,68]. An N = 1 supergravity theory is specified by three
functions: a Hermitian function of the matter scalar fields φi, called the Kähler potential
K, that describes its geometry, a holomorphic function of the superfields, called the
superpotential W , which describes their interactions, and another holomorphic function
fαβ , which describes their couplings to gauge fields Vα [69].

The simplest possibility is that the Kähler metric is flat:

K = φiφ∗
i , (26.75)

where the sum is over all scalar fields in the theory, and the simplest inflationary model
in minimal supergravity had the superpotential [70]

W = m2(1 − φ)2 , (26.76)

Where φ is the inflaton. However, this model predicts a tilted scalar perturbation
spectrum, ns = 0.933, which is now in serious disagreement with the data from Planck
and other experiments shown in Fig. 26.1.

Moreover, there is a general problem that arises in any supergravity theory coupled to
matter, namely that, since its effective scalar potential contains a factor of eK , scalars
typically receive squared masses ∝ H2 ∼ V , where H is the Hubble parameter [71], an
issue called the ‘η problem’. The theory given by (Eq. (26.76)) avoids this η problem,
but a generic supergravity inflationary model encounters this problem of a large inflaton
mass. Moreover, there are additional challenges for supergravity inflation associated with
the spontaneous breaking of local supersymmetry [72,73,74].

Various approaches to the η problem in supergravity have been proposed, including
the possibility of a shift symmetry [75], and one possibility that has attracted renewed
attention recently is no-scale supergravity [76,77]. This is a form of supergravity with a
Kähler potential that can be written in the form [78]

K = −3 ln

(

T + T ∗ −
∑

i |φi|2
3

)

, (26.77)

which has the special property that it naturally has a flat potential, at the classical
level and before specifying a non-trivial superpotential. As such, no-scale supergravity
is well-suited for constructing models of inflation. Adding to its attraction is the feature
that compactifications of string theory to supersymmetric four-dimensional models yield
effective supergravity theories of the no-scale type [79]. There are many examples of
superpotentials that yield effective inflationary potentials for either the T field (which
is akin to a modulus field in some string compactification) or a φ field (generically
representing matter) that are of the same form as the effective potential of the R2 model
(Eq. (26.63)) when the magnitude of the inflaton field ≫ 1 in Planck units, as required to
obtain sufficiently many e-folds of inflation, N∗ [80,81]. This framework also offers the
possibility of using a suitable superpotential to construct models with effective potentials
that are similar, but not identical, to the R2 model, as shown by the dashed coloured
lines in Fig. 26.2.
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26.4.11. Other Exponential Potential Models :

This framework also offers the possibility [80] of constructing models in which the
asymptotic constant value of the potential at large inflaton field values is approached via
a different exponentially-suppressed term:

V (φ) = A
[

1 − δe−Bφ + O(e−2Bφ)
]

, (26.78)

where the magnitude of the scalar density perturbations fixes A, but δ and B are regarded
as free parameters. In the case of R2 inflation δ = 2 and B =

√

2/3. In a model such as

(Eq. (26.78)), one finds at leading order in the small quantity e−Bφ that

ns = 1 − 2B2δe−Bφ ,

r = 8B2δ2e−2Bφ ,

N∗ =
1

B2δ
e+Bφ . (26.79)

yielding the relations

ns = 1 − 2

N∗

, r =
8

B2N2
∗

. (26.80)

This model leads to the class of predictions labelled by ‘α attractors’ [82] in Fig. 26.1.
There are generalizations of the simplest no-scale model (Eq. (26.77)) with prefactors
before the ln(. . .) that are 1 or 2, leading to larger values of B =

√
2 or 1, respectively,

and hence smaller values of r than in the R2 model.

26.5. Model Comparison

Given a particular inflationary model, one can obtain constraints on the model
parameters, informed by the likelihood, corresponding to the probability of the data
given a particular choice of parameters (see Chap. 39, “Statistics” review). In the light
of the detailed constraints on the statistical distribution of primordial perturbations
now inferred from high-precision observations of the cosmic microwave background, it is
also possible to make quantitative comparison of the statistical evidence for or against
different inflationary models. This can be done either by comparing the logarithm of
the maximum likelihood that can be obtained for the data using each model, i.e., the
minimum χ2 (with some correction for the number of free parameters in each model), or
by a Bayesian model comparison [83]( see also Sec. 39.3.3 in “Statistics” review).

In such a Bayesian model comparison one computes [7] the evidence, E(D|MA)
for a model, MA, given the data D. This corresponds to the likelihood, L(θAj) =
p(D|θAj ,MA), integrated over the assumed prior distribution, π(θAj |MA), for all the
model parameters θAj :

E(D|MA) =

∫

L(θAj)π(θAj |MA)dθAj . (26.81)
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Table 26.1: Observational evidence for and against selected inflation models:
∆χ2 is determined relative to a baseline ΛCDM model, and the Bayes factors
are calculated relative to Starobinsky R2 inflation. Results from Planck 2015
analysis [44].

Model ∆χ2 lnBA,ref

R2 inflation +0.8 0

Power-law potential φ2/3 +6.5 −2.4

Power-law potential φ2 +8.6 −4.7

Power-law potential φ4 +43.3 −23.3
Natural inflation +7.2 −2.4
SUSY α-attractor +0.7 −1.8

The posterior probability of the model given the data follows from Bayes’ theorem

p(MA|D) =
E(D|MA)π(MA)

p(D)
, (26.82)

where the prior probability of the model is given by π(MA). Assuming that all models
are equally likely a priori, π(MA) = π(MB), the relative probability of model A relative
to a reference model, in the light of the data, is thus given by the Bayes factor

BA,ref =
E(D|MA)

E(D|Mref)
. (26.83)

Computation of the multi-dimensional integral (Eq. (26.81)) is a challenging numerical
task. Even using an efficient sampling algorithm requires hundreds of thousands of
likelihood computations for each model, though slow-roll approximations can be used to
calculate rapidly the primordial power spectrum using the APSIC numerical library [7]
for a large number of single-field, slow-roll inflation models.

The change in χ2 for selected slow-roll models relative to a baseline ΛCDM model is
given in Table 1 (taken from [44]) . All the inflation models require some amplitude
of tensors and so have an increased χ2 with respect to the baseline ΛCDM model
with a scalar tilt but no tensors. Table Table 26.1 also shows the Bayesian evidence
for (lnBA,ref > 0) or against (lnBA,ref < 0) a selection of inflation models using the

Planck analysis priors [44]. The Starobinsky R2 inflationary model may be chosen
as a reference [44] that provides a good fit to current data. Higgs inflation [58] is
indistinguishable using current data, making the model comparison “inconclusive” on the
Jeffery’s scale (| lnBA,ref | < 1). (Recall, though, that this model is disfavoured by the
measured values of the Higgs and top quark masses [59]. ) On the other hand, there
is now moderate evidence (| lnBA,ref | > 2.5) against large-field models such as chaotic
inflation with a quadratic potential and strong evidence (| lnBA,ref | > 5) against chaotic
inflation with a quartic potential. Indeed, over 30% of the slow-roll inflation models
considered in Ref. [7] are strongly disfavoured by the Planck data.
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The Bayes factors for a wide selection of slow-roll inflationary models are displayed
in Fig. 26.3, which is adapted from Fig. 3 in [84], where more complete descriptions
of the models and the calculations of the Bayes factors are given. Models discussed
in this review are highlighted in yellow, and numbered as follows: (1) R2 inflation
(Sec. 26.4.2) and models with similar predictions, such as Higgs inflation (Sec. 26.4.8)
and no-scale supergravity inflation (Sec. 26.4.10); chaotic inflation models (2) with a φ2

potential; (3) with a φ4 potential; (4) with a φ2/3 potential, and (5) with a φp potential
marginalising over p ∈ [0.2, 6] (Sec. 26.4.3); hilltop inflation models (6) with p = 2; (7)
with p = 4 and (8) marginalising over p (Sec. 26.4.4); (9) brane inflation (Sec. 26.4.5);
(10) natural inflation (Sec. 26.4.6); (11) exponential potential models such as α-attractors
(Sec. 26.4.11). As seen in Fig. 26.3 and discussed in the next Section, constraints on
reheating are starting to provide additional information about models of inflation.

Figure 26.3: The Bayes factors calculated in [84] for a large sample of inflationary
models. Those highlighted in yellow are featured in the this review, according tothe
numbers listed in the text.

26.6. Constraints on Reheating

One connection between inflation and particle physics is provided by inflaton decay,
whose products are expected to have thermalized subsequently. As seen in (Eq. (26.55)),
the number of e-folds required during inflation depends on details of this reheating
process, including the matter density upon reheating, denoted by ρth, which depends
in turn on the inflaton decay rate Γφ. We see in Fig. 26.1 that, within any specific
inflationary model, both ns and particularly r are sensitive to the value of N∗. In
particular, the one-σ uncertainty in the experimental measurement of ns is comparable
to the variation in many model predictions for N∗ ∈ [50, 60]. This implies that the data
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start to constrain scenarios for inflaton decay in many models. For example, it is clear
from Fig. 26.1 that N∗ = 60 would be preferred over N∗ = 50 in a chaotic inflationary
model with a quadratic potential.

As a specific example, let us consider R2 models and related models such as Higgs
and no-scale inflation models that predict small values of r [85]. As seen in Fig. 26.1,
within these models the combination of Planck, BICEP2/Keck Array and BAO data
would require a limited range of ns, corresponding to a limited range of N∗, as seen by
comparing the left and right vertical axes in Fig. 26.4:

N∗ & 52 (68% CL), N∗ & 44 (95% CL) . (26.84)

Within any specific model for inflaton decay, these bounds can be translated into
constraints on the effective decay coupling. For example, if one postulates a two-body
inflaton decay coupling y, the bounds (Eq. (26.84)) can be translated into bounds on
y. This is illustrated in Fig. 26.4, where any value of N∗ (on the left vertical axis),
projected onto the diagonal line representing the correlation predicted in R2-like models,
corresponds to a specific value of the inflaton decay rate Γφ/m (lower horizontal axis)
and hence y (upper horizontal axis):

y & 10−5 (68% CL), y & 10−15 (95% CL) . (26.85)

These bounds are not very constraining – although the 68% CL lower bound on y is
already comparable with the electron Yukawa coupling – but can be expected to improve
significantly in the coming years and thereby provide significant information on the
connections between inflation and particle physics.

26.7. Beyond Single-Field Slow-Roll Inflation

There are numerous possible scenarios beyond the simplest single-field models of
slow-roll inflation. These include theories in which non-canonical fields are considered,
such as k-inflation [86] or DBI inflation [87], and multiple-field models, such as the
curvaton scenario [88]. As well as altering the single-field predictions for the primordial
curvature power spectrum (Eq. (26.48)) and the tensor-scalar ratio (Eq. (26.49)), they may
introduce new quantities that vanish in single-field slow-roll models, such as isocurvature
matter perturbations, corresponding to entropy fluctuations in the photon-to-matter
ratio, at first order:

Sm =
δnm

nm
− δnγ

nγ
=

δρm

ρm
− 3

4

δργ

ργ
. (26.86)

Another possibility is non-Gaussianity in the distribution of the primordial curvature
perturbation (see Chap. 28, “Cosmic Microwave Background” review), encoded in
higher-order correlators such as the primordial bispectrum [89]

〈ζ(k)ζ(k′)ζ(k′′)〉 ≡ (2π)3δ(k + k′ + k′′)Bζ(k, k′, k′′) , (26.87)

which is often expressed in terms of a dimensionless non-linearity parameter fNL ∝
Bζ(k, k′, k′′)/Pζ(k)Pζ(k

′). The three-point function (Eq. (26.87)) can be thought of as
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Figure 26.4: The values of N∗ (left axis) and ns (right axis) in R2 inflation
and related models for a wide range of decay rates, Γφ/m, (bottom axis) and
corresponding two-body couplings, y (top axis). The diagonal red line segment shows
full numerical results over a restricted range of Γφ/m (which are shown in more detail
in the insert), while the diagonal blue strip represents an analytical approximation
described in [85]. The difference between these results is indistinguishable in
the main plot, but is visible in the insert. The horizontal yellow and blue lines
show the 68 and 95% CL lower limits from the Planck 2015 data [44], and the
vertical coloured lines correspond to specific models of inflaton decay. Figure taken
from [85].

defined on a triangle whose sides are k,k′,k′′, of which only two are independent, since
they sum to zero. Further assuming statistical isotropy ensures that the bispectrum
depends only on the magnitudes of the three vectors, k, k′ and k′′. The search for fNL
and other non-Gaussian effects was a prime objective of the Planck data analysis [90].

26.7.1. Effective Field Theory of Inflation :

Since slow-roll inflation is a phase of accelerated expansion with an almost constant
Hubble parameter, one may think of inflation in terms of an effective theory where
the de Sitter spacetime symmetry is spontaneously broken down to RW symmetry by
the time-evolution of the Hubble rate, Ḣ 6= 0. There is then a Goldstone boson, π,
associated with the spontaneous breaking of time-translation invariance, which can be
used to study model-independent properties of inflation. The Goldstone boson describes
a spacetime-dependent shift of the time coordinate, corresponding to an adiabatic
perturbation of the matter fields:

δφi(t, ~x) = φi(t + π(t, ~x)) − φi(t) . (26.88)

Thus adiabatic field fluctuations can be absorbed into the spatial metric perturbation, R
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in Eq. (26.28) at first order, in the comoving gauge:

R = −Hπ , (26.89)

where we define π on spatially-flat hypersurfaces. In terms of inflaton field fluctuations,
we can identify π ≡ δφ/φ̇, but in principle this analysis is not restricted to inflation driven
by scalar fields.

The low-energy effective action for π can be obtained by writing down the most general
Lorentz-invariant action and expanding in terms of π. The second-order effective action
for the free-field wave modes, πk, to leading order in slow roll is then

S
(2)
π = −

∫

d4x
√−g

M2
P Ḣ

c2s

[

π̇2
k − c2s

R2
(∇π)2

]

, (26.90)

where ǫH is the Hubble slow-roll parameter (Eq. (26.11)). We identify c2s with an effective
sound speed, generalising canonical slow-roll inflation, which is recovered in the limit
c2s → 1.

The scalar power spectrum on super-Hubble scales (Eq. (26.48)) is enhanced for a
reduced sound speed, leading to a reduced tensor-scalar ratio (Eq. (26.49))

Pζ(k) ≃ 4π

M2
P

1

c2sǫ

(

H

2π

)2

∗

, r ≃ 16(c2sǫ)∗ . (26.91)

At third perturbative order and to lowest order in derivatives, one obtains [91]

S
(3)
π =

∫

d4x
√−g

M2
P (1 − c2s)Ḣ

c2s

[

π̇(∇π)2

R2
−

(

1 +
2

3

c̃3
c2s

)

π̇3
]

. (26.92)

Note that this expression vanishes for canonical fields with c2s = 1. For c2s 6= 1 the
cubic action is determined by the sound speed and an additional parameter c̃3. Both
terms in the cubic action give rise to primordial bispectra that are well approximated
by equilateral bispectra. However, the shapes are not identical, so one can find a linear
combination for which the equilateral bispectra of each term cancel, giving rise to a
distinctive orthogonal-type bispectrum [91].

Analysis based on Planck 2015 temperature and polarisation data has placed bounds
on several bispectrum shapes including equilateral and orthogonal shapes [90]:

f
equil
NL = −4 ± 43 , f

orthog
NL = −26 ± 21 (68% CL) . (26.93)

For the simplest case of a constant sound speed, and marginalising over c̃3, this provides
a bound on the inflaton sound speed [90]

cs ≥ 0.024 (95% CL) . (26.94)
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For a specific model such as DBI inflation [87], corresponding to c̃3 = 3(1 − c2s)/2, one
obtains a tighter bound [90]:

cDBI
s ≥ 0.087 (95% CL) . (26.95)

The Planck team have analysed a wide range of non-Gaussian templates from different
inflation models, including tests for deviations from an initial Bunch-Davies vacuum state,
direction-dependent non-Gaussianity, and feature models with oscillatory bispectra [90].
No individual feature or resonance is above the three-σ significance level after accounting
for the look-elsewhere effect. These results are consistent with the simplest canonical,
slow-roll inflation models, but do not rule out most alternative models; rather, bounds
on primordial non-Gaussianity place important constraints on the parameter space for
non-canonical models.

26.7.2. Multi-Field Fluctuations :

There is a very large literature on two- and multi-field models of inflation, most
of which lies beyond the scope of this review [92]. However, two important general
topics merit being mentioned here, namely residual isocurvature perturbations and the
possibility of non-Gaussian effects in the primordial perturbations.

One might expect that other scalar fields besides the inflaton might have non-negligible
values that evolve and fluctuate in parallel with the inflaton, without necessarily making
the dominant contribution to the energy density during the inflationary epoch. However,
the energy density in such a field might persist beyond the end of inflation before
decaying, at which point it might come to dominate (or at least make a non-negligible
contribution to) the total energy density. In such a case, its perturbations could end up
generating the density perturbations detected in the CMB. This could occur due to a
late-decaying scalar field [88] or a field fluctuation that modulates the end of inflation [93]
or the inflaton decay [94].

26.7.2.1. Isocurvature Perturbations:

Primordial perturbations arising in single-field slow-roll inflation are necessarily
adiabatic, i.e., they affect the overall density without changing the ratios of different
contributions, such as the photon-matter ratio, δ(nγ/nm)/(nγ/nm). This is because
inflaton perturbations represent a local shift of the time, as described in section Sec. 26.7:

π =
δnγ

ṅγ
=

δnm

ṅm
. (26.96)

However, any light scalar field (i.e., one with effective mass less than the Hubble scale)
acquires a spectrum of nearly scale-invariant perturbations during inflation. Fluctuations
orthogonal to the inflaton in field space are decoupled from the inflaton at Hubble-exit,
but can affect the subsequent evolution of the density perturbation. In particular,
they can give rise to local variations in the equation of state (non-adabatic pressure
perturbations) that can alter the primordial curvature perturbation ζ on super-Hubble
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scales. Since these fluctuations are statistically independent of the inflaton perturbations
at leading order in slow-roll [95], non-adiabatic field fluctuations can only increase the
scalar power spectrum with respect to adiabatic perturbations at Hubble exit, while
leaving the tensor modes unaffected at first perturbative order. Thus the single-field
result for the tensor-scalar ratio (Eq. (26.49)) becomes an inequality [96]

r ≥ 16ǫ∗ . (26.97)

Hence an observational upper bound on the tensor-scalar ratio does not bound the
slow-roll parameter ǫ in multi-field models.

If all the scalar fields present during inflation eventually decay completely into
fully thermalized radiation, these field fluctuations are converted fully into adiabatic
perturbations in the primordial plasma [97]. On the other hand, non-adiabatic field
fluctuations can also leave behind primordial isocurvature perturbations (Eq. (26.86))
after inflation. In multi-field inflation models it is thus possible for non-adiabatic
field fluctuations to generate both curvature and isocurvature perturbations leading to
correlated primordial perturbations [98].

The amplitudes of any primordial isocurvature perturbations (Eq. (26.86)) are
strongly constrained by the current CMB data, especially on large angular scales. Using
temperature and low-ℓ polarisation data yields the following bound on the amplitude of
cold dark matter isocurvature perturbations at scale k = 0.002h−1Mpc−1 (marginalising
over the correlation angle and in the absence of primordial tensor perturbations) [44]:

PSm

Pζ + PSm

< 0.020 at 95% CL . (26.98)

For fully (anti-)correlated isocurvature perturbations, corresponding to a single
isocurvature field providing a source for both the curvature and residual isocurvature
perturbations, the bounds become significantly tighter [44]:

PSm

Pζ + PSm

< 0.0013 at 95% CL, correlated , (26.99)

PSm

Pζ + PSm

< 0.0008 at 95% CL, anti − correlated . (26.100)

26.7.2.2. Local-Type Non-Gaussianity:

Since non-adiabatic field fluctuations in multi-field inflation may lead the to evolution
of the primordial curvature perturbation at all orders, it becomes possible to generate
significant non-Gaussianity in the primordial curvature perturbation. Non-linear evolution
on super-Hubble scales leads to local-type non-Gaussianity, where the local integrated
expansion is a non-linear function of the local field values during inflation, N(φi). While
the field fluctuations at Hubble exit, δφi∗, are Gaussian in the slow-roll limit, the
curvature perturbation, ζ = δN , becomes a non-Gaussian distribution [99]:

ζ =
∑

i

∂N

∂φi
δφi +

1

2

∑

i,j

∂2N

∂φi∂φj
δφiδφj + . . . (26.101)
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with non-vanishing bispectrum in the squeezed limit (k1 ≈ k2 ≫ k3):

Bζ(k1, k2, k3) ≈
12

5
f local
NL

Pζ(k1)

4πk3
1

Pζ(k3)

4πk3
3

, (26.102)

where

6

5
f local
NL =

∑

i,j
∂2N

∂φi∂φj
(

∑

i
∂N
∂φi

)2
. (26.103)

Both equilateral and orthogonal bispectra, discussed above in the context of generalised
single field inflation, vanish in the squeezed limit, enabling the three types of
non-Gaussianity to be distinguished by observations, in principle.

Non-Gaussianity during multi-field inflation is highly model dependent, though f local
NL

can often be smaller than unity in multi-field slow-roll inflation [100]. Scenarios where a
second light field plays a role during or after inflation can make distinctive predictions for
f local
NL , such as f local

NL = −5/4 in some curvaton scenarios [99,101] or f local
NL = 5 in simple

modulated reheating scenarios [94,102]. By contrast the constancy of ζ on super-Hubble
scales in single-field slow-roll inflation leads to a very small non-Gaussianity [103,104],
and in the squeezed limit we have the simple result f local

NL = 5(1 − nS)/12 [105,106].

A combined analysis of the Planck temperature and polarization data yields the
following range for f local

NL defined in (Eq. (26.103)):

f local
NL = 0.8 ± 5.0 (95% CL) . (26.104)

This sensitivity is sufficient to rule out parameter regimes giving rise to relatively large
non-Gaussianity, but insufficient to probe f local

NL = O(ǫ), as expected in single-field models,

or the range f local
NL = O(1) found in the simplest two-field models.

Local-type primordial non-Gaussianity can also give rise to a striking scale-
dependent bias in the distribution of collapsed dark matter halos and thus the galaxy
distribution [107,108]. However, bounds from high-redshift galaxy surveys are not yet
competitive with the best CMB constraints.

26.8. Pre-Inflation and Anomalies in the CMB

Most work on inflation is done in the context of RW cosmology, which already
assumes a high degree of symmetry, or small inhomogeneous perturbations (usually first
order) about an RW cosmology. The isotropic RW spacetime is an attractor for many
homogeneous, but anisotropic cosmologies in the presence of a false vacuum energy
density [109] or a scalar field with suitable self-interaction potential energy [110,111].
However it is much harder to establish the range of highly inhomogeneous initial
conditions that yield a successful RW Universe, with only limited studies to date (see,
e.g., [112,113,114]) .

One of the open questions in inflation is the nature of the pre-inflationary state
that should have provided suitable initial conditions for inflation. This would need to
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have satisfied non-trivial homogeneity and isotropy conditions, and one may ask how
these could have arisen and whether there may be some observable signature of the
pre-inflationary state. In general, one would expect any such effects to appear at large
angular scales, i.e., low multipoles ℓ.

Indeed, various anomalies have been noted in the large-scale CMB anisotropies, also
discussed in Chap. 28, “Cosmic Microwave Background” review, including a possible
suppression of the quadrupole and other very large-scale anisotropies, an apparent feature
in the range ℓ ≈ 20 to 30, and a possible hemispheric asymmetry. None of these are
highly statistically significant in view of the limitations due to cosmic variance [44],
and they cannot yet be regarded as signatures of some pre-inflationary dynamics such as
string theory or the multiverse. However, is a hot topic for present and future analysis.

26.9. Prospects for Future Probes of Inflation

When inflation was first proposed [1,2] there was no evidence for the existence of
scalar fields or the accelerated expansion of the universe. The situation has changed
dramatically in recent years with the observational evidence that the cosmic expansion is
currently accelerating and with the discovery of a scalar particle, namely the Higgs boson
(see Chap. 11, “Status of Higgs boson physics” review). These discoveries encourage
interest in the idea of primordial accelerated expansion driven by a scalar field, i.e.,
cosmological inflation. In parallel, successive CMB experiments have been consistent with
generic predictions of inflationary models, although without yet providing irrefutable
evidence.

Prospective future CMB experiments, both ground- and space-based are reviewed
in the separate PDG “Cosmic Microwave Background” review, Chap. 28. The main
emphasis in CMB experiments in the coming years will be on ground-based experiments
providing improved measurements of B-mode polarization and greater sensitivity to the
tensor-to-scalar ratio r, and more precise measurements at higher ℓ that will constrain
ns better. As is apparent from Fig. 26.1 and the discussion of models such as R2

inflation, there is a strong incentive to reach a 5-σ sensitivity to r ∼ 3 to 4 × 10−3. This
could be achieved with a moderately-sized space mission with large sky coverage [115],
improvements in de-lensing and foreground measurements. The discussion in Sec. 26.3
(see also Fig. 26.4), also brought out the importance of reducing the uncertainty in
ns, as a way to constrain post-inflationary reheating and the connection to particle
physics. CMB temperature anisotropies probe primordial density perturbations down to
comoving scales of order 50 Mpc, beyond which scale secondary sources of anisotropy
dominate. CMB spectral distortions could potentially constrain the amplitude and shape
of primordial density perturbations on comoving scales from Mpc to kpc due to distortions
caused by the Silk damping of pressure waves in the radiation dominated era, before the
last scattering of the CMB photons but after the plasma can be fully thermalised [116].

Improved sensitivity to non-Gaussianities is also a priority. In addition to CMB
measurements, future large-scale structure surveys will also have roles to play as probes
into models of inflation, for which there are excellent prospects. High-redshift galaxy
surveys are sensitive to local-type non-Gaussianity due to the scale-dependent bias
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induced on large scales. Current surveys such as eBOSS, probing out to redshift z ∼ 2,
can reach a precision ∆fNL ∼ 15, from measurements of the galaxy power spectrum,
or possibly ∆fNL ∼ 10, if the galaxy bias can be determined independently [117].
Upcoming surveys such as DESI may reach ∆fNL ∼ 4 [118] comparable with the Planck
sensitivity. In the future, radio surveys such as SKA will measure large-scale structure out
to redshift z ∼ 3 [119], initially through mapping the intensity of the neutral hydrogen
21-cm line, and eventually through radio galaxy surveys which will probe local-type
non-Gaussianity to fNL ∼ 1.

Galaxy clustering using DESI and Euclid satellite data could also constrain the running
of the scalar tilt to a precision of ∆αs ≈ 0.0028, a factor of 2 improvement on Planck
constraints, or a precision of 0.0016 using LSST data [118].

The proposed SPHEREx satellite mission [120] will use measurements of the galaxy
power spectrum to target a measurement of the running of the scalar spectral index
with a sensitivity ∆αs ∼ 10−3 and local-type primordial non-Gaussianity, ∆fNL ∼ 1.
Including information from the galaxy bispectrum one might reduce the measurement
error on non-Gaussianity to ∆fNL ∼ 0.2, making it possible to distinguish between
single-field slow-roll models and alternatives such as the curvaton scenario for the origin
of structure, which generate fNL ∼ 1.
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